2,369 research outputs found

    Music Information Retrieval Meets Music Education

    Get PDF
    This paper addresses the use of Music Information Retrieval (MIR) techniques in music education and their integration in learning software. A general overview of systems that are either commercially available or in research stage is presented. Furthermore, three well-known MIR methods used in music learning systems and their state-of-the-art are described: music transcription, solo and accompaniment track creation, and generation of performance instructions. As a representative example of a music learning system developed within the MIR community, the Songs2See software is outlined. Finally, challenges and directions for future research are described

    Low-Resource Text-to-Speech Using Specific Data and Noise Augmentation

    Full text link
    Many neural text-to-speech architectures can synthesize nearly natural speech from text inputs. These architectures must be trained with tens of hours of annotated and high-quality speech data. Compiling such large databases for every new voice requires a lot of time and effort. In this paper, we describe a method to extend the popular Tacotron-2 architecture and its training with data augmentation to enable single-speaker synthesis using a limited amount of specific training data. In contrast to elaborate augmentation methods proposed in the literature, we use simple stationary noises for data augmentation. Our extension is easy to implement and adds almost no computational overhead during training and inference. Using only two hours of training data, our approach was rated by human listeners to be on par with the baseline Tacotron-2 trained with 23.5 hours of LJSpeech data. In addition, we tested our model with a semantically unpredictable sentences test, which showed that both models exhibit similar intelligibility levels.Comment: Accepted for publication at EUSIPCO-2023, Helsink

    Biodegradability of hydrothermally altered deep-sea dissolved organic matter

    Get PDF
    Deep-sea dissolved organic matter (DOM) constitutes a huge carbon reservoir in the worlds' oceans that – despite its abundance – is virtually unused as a substrate by marine heterotrophs. Heating within hydrothermal systems induces major molecular modifications of deep-sea DOM. Here, we tested the hypothesis that hydrothermal heating of deep-sea DOM enhances bioavailability. Aliquots of DOM extracted from the deep North Pacific (North Equatorial Pacific Intermediate Water; NEqPIW) were re-dissolved in artificial seawater and subjected to temperatures of 100 and 200 °C (40 MPa) using Dickson-type reactors. In agreement with earlier findings we observed a temperature-related drop in dissolved organic carbon (DOC) concentration (−6.1% at 100 °C, −21.0% at 200 °C) that predominantly affected the solid-phase extractable (SPE-DOC) fraction (−18.2% at 100 °C, −51.4% at 200 °C). Fourier-transform ion cyclotron resonance mass spectrometric (FT-ICR-MS) analysis confirmed a temperature-related reduction of average molecular mass, O/C ratios, double bond equivalents (DBE) and a relative increase in aromaticity (AImod). This thermally altered DOM was added (25 μmol L−1 DOC) to deep-water samples from the South West Pacific (Kermadec Arc, RV Sonne / SO253, 32° 37.706′ S | 179° 38.728′ W) and incubated with the prevailing natural microbial community. After 16 days at 4 °C in the dark, prokaryotic cell counts in incubations containing the full spectrum of thermally-degraded DOM (extractable and non-extractable compounds) had increased considerably (on average 21× for DOM100°C and 27× for DOM200°C). In contrast, prokaryotic growth in incubations to which only solid-phase extractable thermally-altered DOM was added was not enhanced compared to control incubations. The experiments demonstrate that temperature-driven degradation of deep-sea recalcitrant DOM within hydrothermal systems turns fractions of it accessible to microbes. The thermally-produced DOM compounds that stimulate microbial growth are not retained on reversed-phase resins (SPE-DOM) and are likely low-molecular mass organic acids. Despite the comprehensive compositional modifications of the solid-phase extractable (SPE-DOM) fraction through heating, it remains inaccessible to microbes at the investigated concentration levels. The microbial incubation resulted in only minor and mostly insignificant overall changes in SPE-DOM molecular composition and concentration

    Modulation of Muscle Atrophy, Fatigue and MLC Phosphorylation by MuRF1 as Indicated by Hindlimb Suspension Studies on MuRF1-KO Mice

    Get PDF
    MuRF1 is a member of the TRIM/RBCC superfamily, a gene family that encompasses a large variety of proteins, all sharing the conserved TRIM (Tripartite Motive) sequential array of RING, B-box, and coiled-coil domains. Within this family, MuRF1(also named TRIM63) is a specialized member that contributes to the development of muscle atrophy and sarcopenia. Here we studied MuRF1's role in muscle atrophy during muscle unloading induced by hindlimb suspension. Consistent with previous studies, we found that MuRF1 inactivation leads to an attenuated muscle atrophy response. The amount of protection was higher as compared to the denervation model, and within the 10 day-suspension period the soleus muscle was spared from atrophy in MuRF1-KO mice. Contractility studies on hindlimb suspended muscle tissues suggested that MuRF1's functions extend beyond muscle trophicity and implicate MuRF1 in muscle fatigue and MLC phosphorylation control: soleus muscle from MuRF1-KO mice fatigued significantly faster and in addition showed a reduced posttetanic twitch potentiation. Thus the present work further established the role of MuRF1 in muscle atrophy and for the first time shows that MuRF1 plays a role in muscle fatigue and twitch potentiation

    Mixed reality for the assessment of aortoiliac anatomy in patients with abdominal aortic aneurysm prior to open and endovascular repair: Feasibility and interobserver agreement

    Get PDF
    Objectives The objective is to evaluate the feasibility and interobserver agreement of a Mixed Reality Viewer (MRV) in the assessment of aortoiliac vascular anatomy of abdominal aortic aneurysm (AAA) patients. Methods Fifty preoperative computed tomography angiographies (CTAs) of AAA patients were included. CTAs were assessed in a mixed reality (MR) environment with respect to aortoiliac anatomy according to a standardized protocol by two experienced observers (Mixed Reality Viewer, MRV, Brainlab AG, Germany). Additionally, all CTAs were independently assessed applying the same protocol by the same observers using a conventional DICOM viewer on a two-dimensional screen with multi-planar reconstructions (Conventional viewer, CV, GE Centricity PACS RA1000 Workstation, GE, United States). The protocol included four sets of items: calcification, dilatation, patency, and tortuosity as well as the number of lumbar and renal arteries. Interobserver agreement (IA, Cohen’s Kappa, κ) was calculated for every item set. Results All CTAs could successfully be displayed in the MRV (100%). The MRV demonstrated equal or better IA in the assessment of anterior and posterior calcification (κMRV: 0.68 and 0.61, κCV: 0.33 and 0.45, respectively) as well as tortuosity (κMRV: 0.60, κCV: 0.48) and dilatation (κMRV: 0.68, κCV: 0.67). The CV demonstrated better IA in the assessment of patency (κMRV: 0.74, κCV: 0.93). The CV also identified significantly more lumbar arteries (CV: 379, MRV: 239, p < 0.01). Conclusions The MRV is a feasible imaging viewing technology in clinical routine. Future efforts should aim at improving hologram quality and enabling accurate registration of the hologram with the physical patient

    Quantitative high-field diffusion tensor imaging of cerebral white matter in asymptomatic high-grade internal carotid artery stenosis

    Get PDF
    Background: Recently, several studies using diffusion-sensitized MRI reported changes in patients with high-grade internal carotid artery stenosis (ICAS) suggestive of subtle brain tissue damage. We used diffusion tensor imaging (DTI) to investigate the microstructural cerebral white matter integrity in asymptomatic patients with high-grade ICAS. Methods: In 15 asymptomatic patients with unilateral high grade (>70%) ICAS, we used 3T MRI including DTI. We used a region-of-interest approach comparing quantitative DTI metrics between both hemispheres including the so-called border zones. MR images were also assessed for periventricular white matter lesions (PWML) as well as collaterals via the circle of Willis. Results: There was no significant intraindividual difference of fractional anisotropy or mean diffusivity values between the hemispheres for any region. PWML was graded 0 degrees in 6 patients, I degrees in 9 and II degrees in 2. Conclusions: In clinically asymptomatic patients with high-grade unilateral ICAS, there was no difference between the DTI parameters of the affected and the unaffected hemisphere. These findings contrast with other studies in asymptomatic high-grade ICAS, which is likely due to patient selection. These findings argue against concomitant chronic tissue integrity changes and implicate the benignity of asymptomatic carotid artery disease in individual patients. Copyright (C) 2012 S. Karger AG, Base

    An review of automatic drum transcription

    Get PDF
    In Western popular music, drums and percussion are an important means to emphasize and shape the rhythm, often defining the musical style. If computers were able to analyze the drum part in recorded music, it would enable a variety of rhythm-related music processing tasks. Especially the detection and classification of drum sound events by computational methods is considered to be an important and challenging research problem in the broader field of Music Information Retrieval. Over the last two decades, several authors have attempted to tackle this problem under the umbrella term Automatic Drum Transcription(ADT).This paper presents a comprehensive review of ADT research, including a thorough discussion of the task-specific challenges, categorization of existing techniques, and evaluation of several state-of-the-art systems. To provide more insights on the practice of ADT systems, we focus on two families of ADT techniques, namely methods based on Nonnegative Matrix Factorization and Recurrent Neural Networks. We explain the methods’ technical details and drum-specific variations and evaluate these approaches on publicly available datasets with a consistent experimental setup. Finally, the open issues and under-explored areas in ADT research are identified and discussed, providing future directions in this fiel

    Raman microscopy as a defect microprobe for hydrogen bonding characterization in materials used in fusion applications

    Get PDF
    We present the Raman microscopy ability to detect and characterize the way hydrogen is bonded with elements that will be used for ITER's plasma facing components. For this purpose we first use hydrogenated amorphous carbon samples, formed subsequently to plasma-wall interactions (hydrogen implantation, erosion, deposition...) occurring inside tokamaks, to demonstrate how this technique can be used to retrieve useful information. We pay attention in identifying which spectroscopic parameters are sensitive to the local structure (sp 3 /sp 2) and which gives information on the hydrogen content using isothermal and linear temperature ramp studies on reference samples produced by plasma enhanced chemical vapor deposition. We then focus on the possibility to use this fast, non-destructive and non-contact technique to characterize the influence of hydrogen isotope implantation in few nanometers of graphite and beryllium as C is still used in the JT-60 tokamak and Be is used in JET and will be used as plasma-facing component in the future reactor ITER. We also pay attention on implantation in tungsten oxide which may be formed accidently in the machine.Comment: Physica Status Solidi C, 201

    Structure of the carbon layers deposited on the toroidal pump limiter of Tore Supra

    Get PDF
    International audienceScanning and transmission electron microscopy analyses have been performed for tiles extracted from the toroidal pump limiter of Tore Supra for erosion- and deposition-dominated zones. Deposit thicknesses have been estimated for the plasma-facing top and the gap side lateral surfaces. Deposit thickness profiles have been measured inside gaps, showing that deposition mainly occurs in the first millimetre and that both poloidal and toroidal gap deposition is asymmetric. Quantitative information on the deposit volume and on D-retention are thus obtained from these measurements. Carbon probed at the tile top surfaces is mainly amorphous carbon, due either to the amorphization induced by ion bombardment in the erosion dominated zone, or to deposit formation processes in the deposition-dominated zones. Deposits are tip-shaped and are oriented, which should give information on transport processes

    Break-informed audio decomposition for interactive redrumming

    Get PDF
    Redrumming or drum replacement is used to substitute or enhance the drum hits in a song with one-shot drum sounds obtained from an external collection or database. In an ideal setting, this is done on multitrack audio, where one or more tracks are dedicated exclusively to drums and percussion. However, most non-professional producers and DJs only have access to mono or stereo downmixes of the music they work with. Motivated by this scenario, as well as previous work on decomposition techniques for audio signals, we propose a step towards enabling full-fledged redrumming with mono downmixes
    corecore